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Note that the oscillations are largely due to the transport delays and water recirculation, rather than PID gains More info: A. L. Edelen et al., IEEETNS, vol. 63, no. 2, 2016



That was an example of using a learned model and predictive control for a
system with long-term time dependencies. ..

... what are some areas where a learned control policy might be useful?



- Image diagnostics = would be nice to use directly,and some yield relatively complicated information
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- Convolutional Neural Networks (CNNs) - very good at image processing Smuated.
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Model Learning

- Reinforcement Learning (RL) = can learn control policies from data

Why not try using image based diagnostics directly in learned control policies?
What’s a relatively simple test case to start with?



Initial Study: Choose Gun Parameters Based on Laser Spot

Motivation:
Gun phase and solenoid strength tuned daily

Asymmetries in initial laser distribution result in
emittance asymmetries downstream

Would be nice to obtain optimal gun phase and
solenoid strength for a given initial laser
distribution automatically (and perhaps prioritize
X Or y emittance to minimize)

Example virtual cathode image
(10Aug. 2016)

Other perks:
PARMELA simulation based on survey data already in existence (J. Edelen)

Try out creating a fast NN modeling tool from slower-executing simulations



Initial Study: Choose Gun Parameters based on Lase

Motivation:
> Gun phase and

> PAR —arready in existence (J. Edelen)
odeling tool from slower-executing simulations



Initial Study: Steps

Create a NN model

Gather simulation data from PARMELA scans

 Be certain that the necessary information can be extracted from
the image, gun phase, and solenoid strength

Train a RL controller using that model

Extension beyond simulation (tentative):

* Incorporate measured data into model and update controller

+ Carefully test on machine
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CNN Model: Simulation Data

PARMELA simulations from the gun up to the exit of CC2
2-D space charge routine

Scanned gun phase, solenoid strength, initial beam distribution

Two sets of data:
Fine scans (steps of 5° phase, 5% sol. str.) for sims just past the gun

Coarse scans (steps of 10° phase, 10% sol. str.) for sims up through
CC2

Parameter Ranges used for Model Training

Parameter Gun Data CC2 Data

Max Value Min Value Max Value Min Value
N, 5001 1015 5001 1004
€nx [M-rad] 2.50E-04 1.60E-06 4.00E-04 9.10E-07
€y [M-rad] 2.40E-04 1.60E-06 4.00E-04 8.50E-07
a, [rad] 14.1 -775.1 0.8 -149.8
a, [rad] 14.5 -797 0.7 -154.5
B, [m/rad] 950.4 7.90E-02 820.2 0.7
B, [m/rad] 896.8 8.40E-02 845.7 0.81
E [MeV] 4.6 3.2 47.2 42.8

Simulated “virtual cathode images”
Going from VCI = initial beam distribution ok from prior work
Initial beam distribution = simulated VCI probably ok

Obviously very “well-behaved” examples
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Simulation predictions
after CC2. Dashed lines
are x-emittance, solid
lines are y-emittance.
Caveat: doesn’t take into
account coupling.. .later
changed NN setup to
predict sigma matrix,
and also used a 3D
space charge routine.

For normalized sol strength, 1 is the setting that produces a peak axial field of 1.8 kG



CNN Model: Performance

Parameter | Train. MAE | Train. STD | Val. MAE Val. STD Parameter | Train. MAE | Train.STD | Val. MAE | Val. STD
N, 69.5 79.8 70.7 75.7 0 103.7 141.2 123.3 176.8

€ nx 2.30E-06 3.50E-06 2.40E-06 3.20E-06 € x 1.00E-05 1.20E-05 1.20E-05 1.60E-05
Eny 2.30E-06 3.40E-06 2.40E-06 3.20E-06 Eny 1.00E-05 1.30E-05 1.20E-05 1.50E-05
a, 9 14.9 10.9 16 a, 3.4 6.6 3.1 5.9

a, 8.8 15.3 10.8 16.1 a, 3.4 6.6 3.1 5.9

B, 12.1 17.6 14.8 18.9 B, 16.3 33.5 14.7 27.8
B, 11.7 16.7 14.3 17.9 B, 16.4 33.6 14.8 27.5

E 4.90E-03 4.90E-03 5.50E-03 6.00E-03 E 4.00E-02 3.90E-02 4.60E-02 6.20E-02

Performance for the predictions after the gun

Performance for the predictions after CC2

For the gun data, all MAEs are between 0.4% and |.8% of the parameter ranges.
For the CC2 data, all MAEs are between 0.9% and 3.1% of the parameter ranges.

- Not bad for such a small training set
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CNN Model: Two Representative Plots

Dashed lines are NN predictions and solid lines are simulation results
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Overview

Main Idea: make better use of image-

As a proof-of-principle test case, we would like to use a CNN-
based controller to adjust the solenoid strength and phase of a
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direct incorporation into particle laser distributions. We are conducting initial studies on the low _(ask. Recently, cNN;haveyvelded %% t/f !, ’
accelerator control systems. energy beamline of the Fermilab Accelerator Science and impressive results in the area of &
computer vision, especially for

Here, we show the result of a first step toward this goal: our trained CNN can be used to predict multiple simulated
downstream beam parameters at FAST using simulated virtual cathode laser images, gun phases, and solenoid strengths.
This model s fast-executing, captures the dynamics of the simulation, and could already be used for fast optimization

Technology (FAST) facility [1].

studies. With additional training on measured data, it could be used in model predictive controller.

image recognition tasks [2].

‘Example of 0 CNN sructure with three convluional
ayers and two ful-connected loyers

They are also starting to be used in physics-related applications, such as
automatic classification of galaxies [3] and neutrino events [4].

of the FAST Low Energy i

Simulations of the FAST low energy beamline were conducted using PARMELA [5]. Included are the
electron gun, both superconducting capture cavities, and the intermediate beam-line elements. A 2D
space charge routine is also included. The field maps of the solenoid assembly, gun, and capture
cavities used for the PARMELA simulations were generated using Poisson Superfish [6].

Predicted Parameters:
—number of transmitted particles
—transverse emittances

—alpha and beta function values

Two Sets of Data:
Fine scans for parameters after the gun

Coarse scans for parameters after capture cavity two (CC2)

hat initial beam distribution.

Two Representative Examples of the Simulation Results

Here we show transverse emittances as a function of solenoid strength for three gun phases
(¢). Dashed lines denote x emittance, and solid lines denote y emittance. The figure at left
shows values after CC2 for a Gaussian initial beam distribution (x RMS width of 0.6 mm and a y
RMS width of 1.2 mm). The figure at right shows values after the gun for a 0.6 mm width top-

—average beam energy . -
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Instead of a classification task, here we use a  Structure details:
CNN in a regression task. We also created a  +

novel hybrid structure that joins a CNN and
fully-connected NN to incorporate both image-
based data and non-image-based data into the
model. Initial beam distributions from the

simulations were converted into images and  *

used as simulated “virtual cathode images.”*

3 convolutional layers:
16 5x5 filters, 16 3x3 filters, 10 3x3 filters

3 fully-connected layers:
150, 70, and 8 nodes

Non-image data bypass the

The network was trained using a combination
of the ADADELTA [7] and Adam [8] optimization
algorithms until performance on the validation
data set began to deteriorate (ie. training was
stopped before significant overfitting occurred).

Network Initialization:
Weights: layer-by-layer method described in [9]

Biases: normal distribution (std. 0.01, mean 0)

layers

Hybrid
Neural
Network:

| Solenoid Strength

Average Energy (E)
Emittances (c,,, &,
Beta Function Values (B,. B,)

‘Alpha Function Values («, , a,)

Number of Particles (N,)

Training and Validation Sets:

Removed cases with <1000 itted particles

Pseudo-random selection of validation data
Final ranges of data sets shown at right

Final number of samples:
— Gun: 1395 for training, 200 for validation
— CC2: 894 for training, 600 for validation
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after the Gun and the Second Capture Cavity

The tables show the NN's performance in terms of mean absolute error (MAE) and standard deviation (STD)
over the training and validation sets. The figures highlight two representative data sets to show how well the
NN can predict the beam parameters.

Despite the small training set and the large number of predicted parameters, the neural network is able to
capture the emittance asymmetry after CC2 that arises from the asymmetry of the initial laser distribution.

For the gun data, all MAES are between 0.4% and 1.8% of the parameter ranges. For the CC2 data, all MAEs are
between 0.9% and 3.1% of the parameter ranges.
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Conclusi

and Next Steps

Despite the small number of samples in the training set, the neural network performs well

the beam

rameter | Train, MAE | Train, STO | Val. MAE

Train. MAE | Tran, 5T

Performancefor thepredictions fter the gun.

performance for the pedicions afer CC2

Presently, we are extending this work to include measured training data from the machine.
For those studies, beam alignment will be used as an additional predicted parameter. Once
the model is updated with measured data, we plan to train a neural network controller and
test it on the machine.

given solenoid strengths, gun phases, and
simulated virtual cathode images. The neural network is able to capture the emittance
asymmetry after CC2 that arises from the asymmetry of the initial laser distribution. This
fast-executing model could already be used for quick optimization studies.
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This work was presented at NAPAC |6
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* One of the student poster contest winners



B
Present Status and Next Steps

- Improving the quality of the setup: - Expanding scope to phase space manipulations:
* Predicting the full sigma matrix - Specify a target sigma matrix
- More realistic initial distributions - Include quads after CC2, capture cavity phases, etc.
» Using 3D space charge routine + Collaborating with NIU:
+ Using locally-connected layers - RTFB transform is a possible application
- Switching to ASTRA - Alex Halavanau running simulation scans with NIU’s

: - newer model = more training data
( greater execution speed > more training data)

- Next steps (in tandem):
« Finish simulation study with present setup
- Extend to phase space manipulation simulation study
- Solidify plans for incorporating measured data and testing controller

+ Need to align available inputs/controllable variables (e.g. sigma matrix vs. info from emittance monitors, rotation of quads, etc.)

+ Also depends on run schedule, status of new emittance monitors, solid time with consistent setup, etc.

Also, if you have some other possible application and have or can easily obtain training data: don’t hesitate to get in touch!



